Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

MicroRNA6443-mediated regulation of FERULATE 5-HYDROXYLASE gene alters lignin composition and enhances saccharification in Populus tomentosa.

Identifieur interne : 000268 ( Main/Exploration ); précédent : 000267; suivant : 000269

MicroRNA6443-mediated regulation of FERULATE 5-HYDROXYLASE gene alters lignin composition and enhances saccharification in Populus tomentosa.

Auteurs : Di Fan [République populaire de Chine] ; Chaofeng Li [République populaire de Chine] ; Chunfen Fan [République populaire de Chine] ; Jian Hu [République populaire de Chine] ; Jianqiu Li [République populaire de Chine] ; Shu Yao [République populaire de Chine] ; Wanxiang Lu [République populaire de Chine] ; Yangyang Yan [République populaire de Chine] ; Keming Luo [République populaire de Chine]

Source :

RBID : pubmed:31849071

Abstract

Ferulate 5-hydroxylase (F5H) is a limiting enzyme involved in biosynthesizing sinapyl (S) monolignol in angiosperms. Genetic regulation of F5H can influence S monolignol synthesis and therefore improve saccharification efficiency and biofuel production. To date, little is known about whether F5H is post-transcriptionally regulated by endogenous microRNAs (miRNAs) in woody plants. Here, we report that a microRNA, miR6443, specifically regulates S lignin biosynthesis during stem development in Populus tomentosa. In situ hybridization showed that miR6443 is preferentially expressed in vascular tissues. We further identified that F5H2 is the direct target of miR6443. Overexpression of miR6443 decreased the transcript level of F5H2 in transgenic plants, resulting in a significant reduction in S lignin content. Conversely, reduced miR6443 expression by short tandem target mimics (STTM) elevated F5H2 transcripts, therefore increasing S lignin composition. Introduction of a miR6443-resistant form of F5H2 into miR6443-overexpression plants restored lignin ectopic composition, supporting that miR6443 specifically regulated S lignin biosynthesis by repressing F5H2 in P. tomentosa. Furthermore, saccharification assays revealed decreased hexose yields by 7.5-24.5% in miR6443-overexpression plants compared with the wild-type control, and increased hexoses yields by 13.2-14.6% in STTM6443-overexpression plants. Collectively, we demonstrate that miR6443 modulates S lignin biosynthesis by specially regulating F5H2 in P. tomentosa.

DOI: 10.1111/nph.16379
PubMed: 31849071


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">MicroRNA6443-mediated regulation of FERULATE 5-HYDROXYLASE gene alters lignin composition and enhances saccharification in Populus tomentosa.</title>
<author>
<name sortKey="Fan, Di" sort="Fan, Di" uniqKey="Fan D" first="Di" last="Fan">Di Fan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Chaofeng" sort="Li, Chaofeng" uniqKey="Li C" first="Chaofeng" last="Li">Chaofeng Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fan, Chunfen" sort="Fan, Chunfen" uniqKey="Fan C" first="Chunfen" last="Fan">Chunfen Fan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hu, Jian" sort="Hu, Jian" uniqKey="Hu J" first="Jian" last="Hu">Jian Hu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Jianqiu" sort="Li, Jianqiu" uniqKey="Li J" first="Jianqiu" last="Li">Jianqiu Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yao, Shu" sort="Yao, Shu" uniqKey="Yao S" first="Shu" last="Yao">Shu Yao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lu, Wanxiang" sort="Lu, Wanxiang" uniqKey="Lu W" first="Wanxiang" last="Lu">Wanxiang Lu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yan, Yangyang" sort="Yan, Yangyang" uniqKey="Yan Y" first="Yangyang" last="Yan">Yangyang Yan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Luo, Keming" sort="Luo, Keming" uniqKey="Luo K" first="Keming" last="Luo">Keming Luo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31849071</idno>
<idno type="pmid">31849071</idno>
<idno type="doi">10.1111/nph.16379</idno>
<idno type="wicri:Area/Main/Corpus">000556</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000556</idno>
<idno type="wicri:Area/Main/Curation">000556</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000556</idno>
<idno type="wicri:Area/Main/Exploration">000556</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">MicroRNA6443-mediated regulation of FERULATE 5-HYDROXYLASE gene alters lignin composition and enhances saccharification in Populus tomentosa.</title>
<author>
<name sortKey="Fan, Di" sort="Fan, Di" uniqKey="Fan D" first="Di" last="Fan">Di Fan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Chaofeng" sort="Li, Chaofeng" uniqKey="Li C" first="Chaofeng" last="Li">Chaofeng Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fan, Chunfen" sort="Fan, Chunfen" uniqKey="Fan C" first="Chunfen" last="Fan">Chunfen Fan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hu, Jian" sort="Hu, Jian" uniqKey="Hu J" first="Jian" last="Hu">Jian Hu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Jianqiu" sort="Li, Jianqiu" uniqKey="Li J" first="Jianqiu" last="Li">Jianqiu Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yao, Shu" sort="Yao, Shu" uniqKey="Yao S" first="Shu" last="Yao">Shu Yao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lu, Wanxiang" sort="Lu, Wanxiang" uniqKey="Lu W" first="Wanxiang" last="Lu">Wanxiang Lu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yan, Yangyang" sort="Yan, Yangyang" uniqKey="Yan Y" first="Yangyang" last="Yan">Yangyang Yan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Luo, Keming" sort="Luo, Keming" uniqKey="Luo K" first="Keming" last="Luo">Keming Luo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The New phytologist</title>
<idno type="eISSN">1469-8137</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Ferulate 5-hydroxylase (F5H) is a limiting enzyme involved in biosynthesizing sinapyl (S) monolignol in angiosperms. Genetic regulation of F5H can influence S monolignol synthesis and therefore improve saccharification efficiency and biofuel production. To date, little is known about whether F5H is post-transcriptionally regulated by endogenous microRNAs (miRNAs) in woody plants. Here, we report that a microRNA, miR6443, specifically regulates S lignin biosynthesis during stem development in Populus tomentosa. In situ hybridization showed that miR6443 is preferentially expressed in vascular tissues. We further identified that F5H2 is the direct target of miR6443. Overexpression of miR6443 decreased the transcript level of F5H2 in transgenic plants, resulting in a significant reduction in S lignin content. Conversely, reduced miR6443 expression by short tandem target mimics (STTM) elevated F5H2 transcripts, therefore increasing S lignin composition. Introduction of a miR6443-resistant form of F5H2 into miR6443-overexpression plants restored lignin ectopic composition, supporting that miR6443 specifically regulated S lignin biosynthesis by repressing F5H2 in P. tomentosa. Furthermore, saccharification assays revealed decreased hexose yields by 7.5-24.5% in miR6443-overexpression plants compared with the wild-type control, and increased hexoses yields by 13.2-14.6% in STTM6443-overexpression plants. Collectively, we demonstrate that miR6443 modulates S lignin biosynthesis by specially regulating F5H2 in P. tomentosa.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">31849071</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-8137</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>226</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2020</Year>
<Month>04</Month>
</PubDate>
</JournalIssue>
<Title>The New phytologist</Title>
<ISOAbbreviation>New Phytol</ISOAbbreviation>
</Journal>
<ArticleTitle>MicroRNA6443-mediated regulation of FERULATE 5-HYDROXYLASE gene alters lignin composition and enhances saccharification in Populus tomentosa.</ArticleTitle>
<Pagination>
<MedlinePgn>410-425</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/nph.16379</ELocationID>
<Abstract>
<AbstractText>Ferulate 5-hydroxylase (F5H) is a limiting enzyme involved in biosynthesizing sinapyl (S) monolignol in angiosperms. Genetic regulation of F5H can influence S monolignol synthesis and therefore improve saccharification efficiency and biofuel production. To date, little is known about whether F5H is post-transcriptionally regulated by endogenous microRNAs (miRNAs) in woody plants. Here, we report that a microRNA, miR6443, specifically regulates S lignin biosynthesis during stem development in Populus tomentosa. In situ hybridization showed that miR6443 is preferentially expressed in vascular tissues. We further identified that F5H2 is the direct target of miR6443. Overexpression of miR6443 decreased the transcript level of F5H2 in transgenic plants, resulting in a significant reduction in S lignin content. Conversely, reduced miR6443 expression by short tandem target mimics (STTM) elevated F5H2 transcripts, therefore increasing S lignin composition. Introduction of a miR6443-resistant form of F5H2 into miR6443-overexpression plants restored lignin ectopic composition, supporting that miR6443 specifically regulated S lignin biosynthesis by repressing F5H2 in P. tomentosa. Furthermore, saccharification assays revealed decreased hexose yields by 7.5-24.5% in miR6443-overexpression plants compared with the wild-type control, and increased hexoses yields by 13.2-14.6% in STTM6443-overexpression plants. Collectively, we demonstrate that miR6443 modulates S lignin biosynthesis by specially regulating F5H2 in P. tomentosa.</AbstractText>
<CopyrightInformation>© 2019 The Authors New Phytologist © 2019 New Phytologist Trust.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Fan</LastName>
<ForeName>Di</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Li</LastName>
<ForeName>Chaofeng</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fan</LastName>
<ForeName>Chunfen</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Southwest University, Chongqing, 400715, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hu</LastName>
<ForeName>Jian</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Jianqiu</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yao</LastName>
<ForeName>Shu</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Wanxiang</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yan</LastName>
<ForeName>Yangyang</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Luo</LastName>
<ForeName>Keming</ForeName>
<Initials>K</Initials>
<Identifier Source="ORCID">0000-0003-4928-7578</Identifier>
<AffiliationInfo>
<Affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Southwest University, Chongqing, 400715, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>01</Month>
<Day>31</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>New Phytol</MedlineTA>
<NlmUniqueID>9882884</NlmUniqueID>
<ISSNLinking>0028-646X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Populus </Keyword>
<Keyword MajorTopicYN="Y">ferulate 5-hydroxylase (F5H)</Keyword>
<Keyword MajorTopicYN="Y">lignin monomer</Keyword>
<Keyword MajorTopicYN="Y">miR6443</Keyword>
<Keyword MajorTopicYN="Y">saccharification</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>09</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>12</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>12</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>12</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>12</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31849071</ArticleId>
<ArticleId IdType="doi">10.1111/nph.16379</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Agarwal T, Grotewold E, Doseff AI, Gray J. 2016. MYB31/MYB42 syntelogs exhibit divergent regulation of phenylpropanoid genes in maize, sorghum, rice. Scientific Reports 6: 28502.</Citation>
</Reference>
<Reference>
<Citation>Barros J, Serk H, Granlund I, Pesquet E. 2015. The cell biology of lignification in higher plants. Annals of Botany 115: 1053-1074.</Citation>
</Reference>
<Reference>
<Citation>Baucher M, Monties B, Van Montagu M, Boerjan W. 1998. Biosynthesis and genetic engineering of lignin. Critical Reviews in Plant Sciences 17: 125-197.</Citation>
</Reference>
<Reference>
<Citation>Boerjan W, Ralph J, Baucher M. 2003. Lignin biosynthesis. Annual Review of Plant Biology 54: 519-546.</Citation>
</Reference>
<Reference>
<Citation>Bonawitz ND, Chapple C. 2010. The genetics of lignin biosynthesis: connecting genotype to phenotype. Annual Review of Genetics 44: 337-363.</Citation>
</Reference>
<Reference>
<Citation>Chapple C, Vogt T, Ellis BE, Somerville CR. 1992. An Arabidopsis mutant defective in the general phenylpropanoid pathway. Plant Cell 4: 1413-1424.</Citation>
</Reference>
<Reference>
<Citation>Chen F, Dixon RA. 2007. Lignin modification improves fermentable sugar yields for biofuel production. Nature Biotechnology 25: 759-761.</Citation>
</Reference>
<Reference>
<Citation>Chen S, Songkumarn P, Liu J, Wang GL. 2009. A versatile zero background T-vector system for gene cloning and functional genomics. Plant Physiology 150: 1111-1121.</Citation>
</Reference>
<Reference>
<Citation>Chen TY, Wang B, Wu YY, Wen J, Liu C, Yuan T, Sun R. 2017. Structural variations of lignin macromolecule from different growth years of Triploid of Populus tomentosa Carr. International Journal of Biological Macromolecules 101: 747-757.</Citation>
</Reference>
<Reference>
<Citation>Dai XB, Zhuang ZH, Zhao PX. 2018. psRNATarget: a plant small RNA target analysis server. Nucleic Acids Research. 46: W49-W54.</Citation>
</Reference>
<Reference>
<Citation>Dische Z. 1962. Color reactions of pentoses. Methods in Carbohydrate Chemistry 1: 484-488.</Citation>
</Reference>
<Reference>
<Citation>Donaldson LA. 2001. Lignification and lignin to pochemistry-an ultrastructural view. Phytochemistry 57: 859-873.</Citation>
</Reference>
<Reference>
<Citation>Duan H, Lu X, Lian C, An Y, Xia X, Yin W. 2016. Genome-wide analysis of microRNA Responses to the phytohormone abscisic acid in Populus euphratica. Frontiers in Plant Science 7: 1184.</Citation>
</Reference>
<Reference>
<Citation>Fan C, Feng S, Huang J, Wang Y, Wu L, Li X, Wang L, Tu Y, Xia T, Li J et al. 2017. AtCesA8-driven OsSUS3 expression leads to largely enhanced biomass saccharification and lodging resistance by distinctively altering lignocellulose features in rice. Biotechnology for Biofuels 10: 221.</Citation>
</Reference>
<Reference>
<Citation>Fry SC. 1988. The growing plant cell wall: chemical and metabolic analysis. Essex, UK: Longman Scientific and Technical, 95-97.</Citation>
</Reference>
<Reference>
<Citation>Fornalé S, Shi X, Chai C, Encina A, Irar S, Capellades M, Fuguet E, Torres JL, Rovira P, Puigdomènech P. 2010. ZmMYB31 directly represses maize lignin genes and redirects the phenylpropanoid metabolic flux. The Plant Journal 64: 633-644.</Citation>
</Reference>
<Reference>
<Citation>Franke R, McMichael CM, Meyer K, Shirley AM, Cusumano JC, Chapple C. 2000. Modified lignin in tobacco and poplar plants over-expressing the Arabidopsis gene encoding ferulate 5-hydroxylase. The Plant Journal 22: 223-234.</Citation>
</Reference>
<Reference>
<Citation>Freudenberg K. 1965. Lignin: its constitution and formation from p-Hydroxycinnamyl alcohols: lignin is duplicated by dehydrogenation of these alcohols; intermediates explain formation and structure. Science 148: 595-600.</Citation>
</Reference>
<Reference>
<Citation>Guo D, Chen F, Inoue K, Blount JW, Dixon RA. 2001. Downregulation of caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferasein transgenic alfalfa. Impacts on lignin structure and implications for the biosynthesis of G and S lignin. Plant Cell 13: 73-88.</Citation>
</Reference>
<Reference>
<Citation>Higuchi T. 1997. Biosynthesis of wood components. In: Timell TE, ed. Biochemistry and molecular biology of wood. Berlin, Germany: Springer, 93-262.</Citation>
</Reference>
<Reference>
<Citation>Humphreys J, Hemm M, Chapple C. 1999. New routes for lignin biosynthesis defined by biochemical characterization of recombinant ferulate 5-hydroxylase, a multifunctional cytochrome P450-dependent monooxygenase. Proceedings of the National Academy of Sciences, USA 96: 10045-10050.</Citation>
</Reference>
<Reference>
<Citation>Huntley SK, Ellis D, Gilbert M, Chapple C, Mansfield SD. 2003. Significant increases in pulping efficiency in C4H-F5H-transformed poplars: improved chemical savings and reduced environmental toxins. Journal of Agriculture and Food Chemistry 51: 6178-6183.</Citation>
</Reference>
<Reference>
<Citation>Iiyama K, Pant R. 1988. The mechanism of the Mäule colour reaction introduction of methylated syringyl nuclei into softwood lignin. Wood Science and Technology 22: 167-175.</Citation>
</Reference>
<Reference>
<Citation>Jia ZC, Sun YM, Yuan L, Tian QY, Luo KM. 2010. The chitinase gene (Bbchit1) from Beauveria bassiana enhances resistance to Cytospora chrysosperma in Populus tomentosa Carr. Biotechnology Letters 32: 1325-1332.</Citation>
</Reference>
<Reference>
<Citation>Jones-Rhoades MW, Bartel DP. 2004. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Molecular Cell 14: 787-799.</Citation>
</Reference>
<Reference>
<Citation>Jones-Rhoades MW, Bartel DP, Bartel B. 2006. MicroRNAs and their regulatory roles in plants. Annual Review of Plant Biology 57: 19-53.</Citation>
</Reference>
<Reference>
<Citation>Kozomara A, Griffiths-Jones S. 2011. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Research 39: D152-D157.</Citation>
</Reference>
<Reference>
<Citation>Lapierre C, Pollet B, Rolando C. 1995. New insights into the molecular architecture of hardwood lignins by chemical degradative methods. Research on Chemical Intermediates 21: 397.</Citation>
</Reference>
<Reference>
<Citation>Li L, Zhou YH, Cheng XF, Sun JY, Marita JM, Ralph J, Chiang VL. 2003. Combinatorial modification of multiple lignin traits in trees through multigene cotransformation. Proceedings of the National Academy of Sciences, USA 100: 4939-4944.</Citation>
</Reference>
<Reference>
<Citation>Li X, Ximenes E, Kim Y, Slininger M, Meilan R, Ladisch M, Chapple C. 2010. Lignin monomer composition affects Arabidopsis cell wall degradability after liquid hot water pretreatment. Biotechnology for Biofuels 3: 27-34.</Citation>
</Reference>
<Reference>
<Citation>Lu S, Li Q, Wei H, Chang MJ, Tunlaya-Anukit S, Kim H, Liu J, Song J, Sun YH, Yuan L et al. 2013. Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa. Proceedings of the National Academy of Sciences, USA 110: 10848-10853.</Citation>
</Reference>
<Reference>
<Citation>Lu S, Sun YH, Shi R, Clark C, Li L, Chiang VL. 2005. Novel and mechanical stress-responsive MicroRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell 17: 2186-2203.</Citation>
</Reference>
<Reference>
<Citation>Ma QH. 2009. The expression of caffeic acid 3-O-methyltransferase in two wheat genotypes differing in lodging resistance. Journal of Experimental Botany 60: 2763-2771.</Citation>
</Reference>
<Reference>
<Citation>Marita J, Ralph J, Hatfield RD, Chapple C. 1999. NMR characterization of lignins in Arabidopsis altered in the activity of ferulate-5-hydroxylase. Proceedings of the National Academy of Sciences, USA 96: 12328-12332.</Citation>
</Reference>
<Reference>
<Citation>Meyer K, Shirley AM, Cusumano JC, Bell-Lelong DA, Chapple C. 1998. Lignin monomer composition is determined by the expression of a cytochrome P450-dependent monooxygenase in Arabidopsis. Proceedings of the National Academy of Sciences, USA 95: 6619-6623.</Citation>
</Reference>
<Reference>
<Citation>Nikovics K, Blein T, Peaucelle A, Ishida T, Morin H, Aida M, Laufs P. 2006. The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis. Plant Cell 18: 2929-2945.</Citation>
</Reference>
<Reference>
<Citation>Öhman D, Demedts B, Kumar M, Gerber L, Gorzsás A, Goeminne G, Hedenström M, Ellis B, Boerjan W, Sundberg B. 2013. MYB103 is required for FERULATE-5-HYDROXYLASE expression and syringyl lignin biosynthesis in Arabidopsis stems. The Plant Journal 73: 63-76.</Citation>
</Reference>
<Reference>
<Citation>Osakabe K, Tsao CC, Li L, Popko JL, Umezawa T, Carraway DT, Smeltzer RH, Joshi CP, Chiang VL. 1999. Coniferyl aldehyde 5-hydroxylation and methylation direct syringyl lignin biosynthesis in angiosperms. Proceedings of the National Academy of Sciences, USA 96: 8955-8960.</Citation>
</Reference>
<Reference>
<Citation>Puzey JR, Karger A, Axtell M, Kramer EM. 2012. Deep annotation of Populus trichocarpa microRNAs from diverse tissue sets. PLoS ONE 7: e33034.</Citation>
</Reference>
<Reference>
<Citation>Quan M, Du Q, Xiao L, Lu W, Wang L, Xie J, Song Y, Xu B, Zhang D. 2019. Genetic architecture underlying the lignin biosynthesis pathway involves noncoding RNAs and transcription factors for growth and wood properties in Populus. Plant Biotechnology Journal 17: 302-315.</Citation>
</Reference>
<Reference>
<Citation>Reddy MS, Chen F, Shadle G, Jackson L, Aljoe H, Dixon RA. 2005. Targeted down-regulation of cytochrome P450 enzymes for forage quality improvement in alfalfa (Medicago sativa L.). Proceedings of the National Academy of Sciences, USA 102: 16573-16578.</Citation>
</Reference>
<Reference>
<Citation>Sang X, Li Y, Luo Z, Ren D, Fang L, Wang N, Zhao F, Ling Y, Yang Z, Liu Y, He G. 2012. CHIMERIC FLORAL ORGANS1, encoding a monocot-specific MADS box protein, regulates floral organ identity in rice. Plant Physiology 160: 788-807.</Citation>
</Reference>
<Reference>
<Citation>Sarkanen KV. 1971. Lignin precursors and their polymerization. In: Sarkanen KV, Ludwing CH, eds. Lignins: Occurrence, formation, structure, and reactions. New York, NY, USA: Wiley-Interscience, 95-163.</Citation>
</Reference>
<Reference>
<Citation>Sarkanen KV. 1976. Renewable resources for the production of fuels and chemicals. Science 191: 773-776.</Citation>
</Reference>
<Reference>
<Citation>Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D. 2005. Specific effects of microRNAs on the plant transcriptome. Developmental Cell 8: 517-527.</Citation>
</Reference>
<Reference>
<Citation>Shi R, Sun YH, Li Q, Heber S, Sederoff R, Chiang VL. 2010. Towards a systems approach for lignin biosynthesis in Populus trichocarpa: transcript abundance and specificity of the monolignol biosynthetic genes. Plant Cell and Physiology 51: 144-163.</Citation>
</Reference>
<Reference>
<Citation>Sparkes IA, Runions J, Kearns A, Hawes C. 2006. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nature Protocols 1: 2019.</Citation>
</Reference>
<Reference>
<Citation>Stewart JJ, Akiyama T, Chapple C, Ralph J, Mansfield SD. 2009. The effects on lignin structure of overexpression of ferulate 5-hydroxylase in hybrid poplar. Plant Physiology 150: 621-635.</Citation>
</Reference>
<Reference>
<Citation>Studer MH, DeMartini JD, Davis MF, Sykes RW, Davison B, Keller M, Tuskan GA, Wyman CE. 2011. Lignin content in natural Populus variants affects sugar release. Proceedings of the National Academy of Sciences 108: 6300-6305.</Citation>
</Reference>
<Reference>
<Citation>Sun JX, Sun XF, Sun RC, Fowler P, Baird MS. 2003. Inhomogeneities in the chemical structure of sugarcane bagasse lignin. Journal of Agriculture and Food Chemistry 51: 6719-6725.</Citation>
</Reference>
<Reference>
<Citation>Sun SL, Wen JL, Ma MG, Li MF, Sun RC. 2013. Revealing the structural inhomogeneity of lignins from sweet sorghum stem by successive alkali extractions. Journal of Agriculture and Food Chemistry 61: 4226-4235.</Citation>
</Reference>
<Reference>
<Citation>Tang F, Wei H, Zhao S, Wang L, Zheng H, Lu M. 2016. Identification of microRNAs involved in regeneration of the secondary vascular system in Populus tomentosa Carr. Frontiers in Plant Science 7: 724.</Citation>
</Reference>
<Reference>
<Citation>Thomson DW, Bracken CP, Goodall GJ. 2011. Experimental strategies for microRNA target identification. Nucleic Acids Research 39: 6845-6853.</Citation>
</Reference>
<Reference>
<Citation>Timell TE, ed. 1986. Compression wood in gymnosperms, vol. 1: Bibliography, historical background, determination, structure, chemistry, topochemistry, physical properties, origin, and formation of compression wood. Berlin, Germany: Springer, 706.</Citation>
</Reference>
<Reference>
<Citation>Vance CP, Kirk TK, Sherwood RT. 1980. Lignification as a mechanism of disease resistance. Annual Review of Phytopathology 18: 259-288.</Citation>
</Reference>
<Reference>
<Citation>Vanholme R, Cesarino I, Rataj K, Xiao Y, Sundin L, Goeminne G, Kim H, Cross J, Morreel K, Araujo P et al. 2013. Caffeoyl shikimate esterase (CSE) is an enzyme in the lignin biosynthetic pathway in Arabidopsis. Science 341: 1103-1106.</Citation>
</Reference>
<Reference>
<Citation>Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP. 2007. Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 3: 12.</Citation>
</Reference>
<Reference>
<Citation>Voinnet O. 2009. Origin, biogenesis, and activity of plant microRNAs. Cell 136: 669-687.</Citation>
</Reference>
<Reference>
<Citation>Wagner A, Ralph J, Akiyama T, Flint H, Phillips L, Torr K, Nanayakkara B, Te Kiri L. 2007. Exploring lignification in conifers by silencing hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyltrans?ferase in Pinus radiata. Proceedings of the National Academy of Sciences, USA 104: 11856-11861.</Citation>
</Reference>
<Reference>
<Citation>Wang CY, Zhang S, Yu Y, Luo YC, Liu Q, Ju C, Zhang YC, Qu LH, Lucas WJ, Wang X et al. 2014. MiR397b regulates both lignin content and seed number in Arabidopsis via modulating a laccase involved in lignin biosynthesis. Plant Biotechnology Journal 12: 1132-1142.</Citation>
</Reference>
<Reference>
<Citation>Wang JP, Matthews ML, Williams CM, Shi R, Yang C, Tunlaya-anukit S et al. 2018. Improving wood properties for wood utilization through multi-omics integration in lignin biosynthesis. Nature Communications 9: 1579.</Citation>
</Reference>
<Reference>
<Citation>Wen JL, Sun SL, Xue BL, Sun RC. 2015. Structural elucidation of inhomogeneous lignins from bamboo. International Journal of Biological Macromolecules 77: 250-259.</Citation>
</Reference>
<Reference>
<Citation>Wu Z, Wang N, Hisano H, Cao Y, Wu F, Liu W, Bao Y, Wang Z, Fu C. 2019. Simultaneous regulation of F5H in COMT-RNAi transgenic switchgrass alters effects of COMT suppression on syringyl lignin biosynthesis. Plant Biotechnology Journal 17: 836-845.</Citation>
</Reference>
<Reference>
<Citation>Yan J, Gu Y, Jia X, Kang W, Pan S, Tang X, Chen X, Tang G. 2012. Effective small RNA destruction by the expression of a short tandem target mimic in Arabidopsis. Plant Cell 24: 415-427.</Citation>
</Reference>
<Reference>
<Citation>Zhang YC, Yu Y, Wang CY, Li ZY, Liu Q, Xu J, Liao JY, Wang XJ, Qu LH, Chen F et al. 2013. Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching. Nature Biotechnology 31: 848-852.</Citation>
</Reference>
<Reference>
<Citation>Zhang J, Xie M, Li M, Ding J, Pu Y, Bryan AC, Rottmann W, Winkeler KA, Collins CM, Singan V et al. 2019. Overexpression of a Prefoldin β subunit gene reduces biomass recalcitrance in the bioenergy crop Populus. Plant Biotechnology Journal. doi: 10.1111/pbi.13254.</Citation>
</Reference>
<Reference>
<Citation>Zhao Q, Wang H, Yin Y, Xu Y, Chen F, Dixon RA. 2010. Syringyl lignin biosynthesis is directly regulated by a secondary cell wall master switch. Proceedings of the National Academy of Sciences, USA 107: 14496-14501.</Citation>
</Reference>
<Reference>
<Citation>Zheng M, Chen J, Shi Y, Li Y, Yin Y, Yang D, Luo Y, Pang D, Xu X, Li W, Ni J, Wang Y et al. 2017. Manipulation of lignin metabolism by plant densities and its relationship with lodging resistance in wheat. Scientific Reports 7: 41805.</Citation>
</Reference>
<Reference>
<Citation>Zhou Y, Xu Z, Duan C, Chen Y, Meng Q, Wu J, Hao Z, Wang Z, Li M, Yong H et al. 2016. Dual transcriptome analysis reveals insights into the response to rice black-streaked dwarf virus in maize. Journal of Experimental Botany 67: 4593-4609.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Fan, Di" sort="Fan, Di" uniqKey="Fan D" first="Di" last="Fan">Di Fan</name>
</noRegion>
<name sortKey="Fan, Chunfen" sort="Fan, Chunfen" uniqKey="Fan C" first="Chunfen" last="Fan">Chunfen Fan</name>
<name sortKey="Fan, Chunfen" sort="Fan, Chunfen" uniqKey="Fan C" first="Chunfen" last="Fan">Chunfen Fan</name>
<name sortKey="Hu, Jian" sort="Hu, Jian" uniqKey="Hu J" first="Jian" last="Hu">Jian Hu</name>
<name sortKey="Li, Chaofeng" sort="Li, Chaofeng" uniqKey="Li C" first="Chaofeng" last="Li">Chaofeng Li</name>
<name sortKey="Li, Jianqiu" sort="Li, Jianqiu" uniqKey="Li J" first="Jianqiu" last="Li">Jianqiu Li</name>
<name sortKey="Lu, Wanxiang" sort="Lu, Wanxiang" uniqKey="Lu W" first="Wanxiang" last="Lu">Wanxiang Lu</name>
<name sortKey="Luo, Keming" sort="Luo, Keming" uniqKey="Luo K" first="Keming" last="Luo">Keming Luo</name>
<name sortKey="Luo, Keming" sort="Luo, Keming" uniqKey="Luo K" first="Keming" last="Luo">Keming Luo</name>
<name sortKey="Yan, Yangyang" sort="Yan, Yangyang" uniqKey="Yan Y" first="Yangyang" last="Yan">Yangyang Yan</name>
<name sortKey="Yao, Shu" sort="Yao, Shu" uniqKey="Yao S" first="Shu" last="Yao">Shu Yao</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000268 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000268 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31849071
   |texte=   MicroRNA6443-mediated regulation of FERULATE 5-HYDROXYLASE gene alters lignin composition and enhances saccharification in Populus tomentosa.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31849071" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020